Heatmap of pairwise adjusted rand indices between solutions
Source:R/heatmaps.R
meta_cluster_heatmap.Rd
Heatmap of pairwise adjusted rand indices between solutions
Usage
meta_cluster_heatmap(
aris,
order = NULL,
cluster_rows = FALSE,
cluster_columns = FALSE,
log_graph = FALSE,
scale_diag = "none",
min_colour = "#282828",
max_colour = "firebrick2",
col = circlize::colorRamp2(c(min(aris), max(aris)), c(min_colour, max_colour)),
...
)
Arguments
- aris
Matrix of adjusted rand indices from
calc_aris()
- order
Numeric vector containing row order of the heatmap.
- cluster_rows
Whether rows should be clustered.
- cluster_columns
Whether columns should be clustered.
- log_graph
If TRUE, log transforms the graph.
- scale_diag
Method of rescaling matrix diagonals. Can be "none" (don't change diagonals), "mean" (replace diagonals with average value of off-diagonals), or "zero" (replace diagonals with 0).
- min_colour
Colour used for the lowest value in the heatmap.
- max_colour
Colour used for the highest value in the heatmap.
- col
Colour ramp to use for the heatmap.
- ...
Additional parameters passed to
similarity_matrix_heatmap()
, the function that this function wraps.
Value
Returns a heatmap (class "Heatmap" from package ComplexHeatmap) that displays the pairwise adjusted Rand indices (similarities) between the cluster solutions of the provided solutions data frame.
Examples
#dl <- data_list(
# list(cort_sa, "cortical_surface_area", "neuroimaging", "continuous"),
# list(subc_v, "subcortical_volume", "neuroimaging", "continuous"),
# list(income, "household_income", "demographics", "continuous"),
# list(pubertal, "pubertal_status", "demographics", "continuous"),
# uid = "unique_id"
#)
#
#set.seed(42)
#my_sc <- snf_config(
# dl = dl,
# n_solutions = 20,
# min_k = 20,
# max_k = 50
#)
#
#sol_df <- batch_snf(dl, my_sc)
#
#sol_df
#
#sol_aris <- calc_aris(sol_df)
#
#meta_cluster_order <- get_matrix_order(sol_aris)
#
## `split_vec` found by iteratively plotting ari_hm or by ?shiny_annotator()
#split_vec <- c(6, 10, 16)
#ari_hm <- meta_cluster_heatmap(
# sol_aris,
# order = meta_cluster_order,
# split_vector = split_vec
#)