Heatmap of p-values
Usage
pval_heatmap(
ext_sol_df,
order = NULL,
cluster_columns = TRUE,
cluster_rows = FALSE,
show_row_names = FALSE,
show_column_names = TRUE,
min_colour = "red2",
max_colour = "white",
legend_breaks = c(0, 1),
col = circlize::colorRamp2(legend_breaks, c(min_colour, max_colour)),
heatmap_legend_param = list(color_bar = "continuous", title = "p-value", at = c(0, 1)),
rect_gp = grid::gpar(col = "black"),
column_split_vector = NULL,
row_split_vector = NULL,
column_split = NULL,
row_split = NULL,
...
)
Arguments
- ext_sol_df
An ext_solutions_df class object (produced from the function
extend_solutions
.- order
Numeric vector containing row order of the heatmap.
- cluster_columns
Whether columns should be sorted by hierarchical clustering.
- cluster_rows
Whether rows should be sorted by hierarchical clustering.
- show_row_names
Whether row names should be shown.
- show_column_names
Whether column names should be shown.
- min_colour
Colour used for the lowest value in the heatmap.
- max_colour
Colour used for the highest value in the heatmap.
- legend_breaks
Numeric vector of breaks for the legend.
- col
Colour function for
ComplexHeatmap::Heatmap()
- heatmap_legend_param
Legend function for
ComplexHeatmap::Heatmap()
- rect_gp
Cell border function for
ComplexHeatmap::Heatmap()
- column_split_vector
Vector of indices to split columns by.
- row_split_vector
Vector of indices to split rows by.
- column_split
Standard parameter of
ComplexHeatmap::Heatmap
.- row_split
Standard parameter of
ComplexHeatmap::Heatmap
.- ...
Additional parameters passed to
ComplexHeatmap::Heatmap
.
Value
Returns a heatmap (class "Heatmap" from package ComplexHeatmap) that displays the provided p-values.
Examples
#dl <- data_list(
# list(income, "household_income", "demographics", "ordinal"),
# list(pubertal, "pubertal_status", "demographics", "continuous"),
# list(fav_colour, "favourite_colour", "demographics", "categorical"),
# list(anxiety, "anxiety", "behaviour", "ordinal"),
# list(depress, "depressed", "behaviour", "ordinal"),
# uid = "unique_id"
#)
#
#sc <- snf_config(
# dl,
# n_solutions = 4,
# dropout_dist = "uniform",
# max_k = 50
#)
#
#sol_df <- batch_snf(dl, sc)
#
#ext_sol_df <- extend_solutions(sol_df, dl)
#
#pval_heatmap(ext_sol_df)