Package index
-
abcd_anxiety
- Mock ABCD anxiety data
-
abcd_colour
- Mock ABCD "colour" data
-
abcd_cort_sa
- Mock ABCD cortical surface area data
-
abcd_cort_t
- Mock ABCD cortical thickness data
-
abcd_depress
- Mock ABCD depression data
-
abcd_h_income
- Mock ABCD income data
-
abcd_income
- Mock ABCD income data
-
abcd_pubertal
- Mock ABCD pubertal status data
-
abcd_subc_v
- Mock ABCD subcortical volumes data
-
add_columns()
- Add columns to a dataframe
-
add_settings_matrix_rows()
- Add settings matrix rows
-
adjusted_rand_index_heatmap()
- Heatmap of pairwise adjusted rand indices between solutions
-
age_df
- Mock age data
-
alluvial_cluster_plot()
- Alluvial plot of patients across cluster counts and important features
-
anxiety
- Mock ABCD anxiety data
-
arrange_dl()
- Given a data_list object, sort data elements by subjectkey
-
assemble_data()
- Collapse a dataframe and/or a data_list into a single dataframe
-
assoc_pval_heatmap()
- Heatmap of pairwise associations between features
-
auto_plot()
- Automatically plot features across clusters
-
bar_plot()
- Bar plot separating a feature by cluster
-
batch_nmi()
- Calculate feature NMIs for a data_list and a derived solutions_matrix
-
batch_row_closure()
- Generate closure function to run batch_snf in an apply-friendly format
-
batch_snf()
- Run variations of SNF.
-
batch_snf_subsamples()
- Run SNF clustering pipeline on a list of subsampled data lists.
-
calc_aris()
- Meta-cluster calculations
-
calc_assoc_pval()
- Calculate p-values based on feature vectors and their types
-
calc_assoc_pval_matrix()
- Calculate p-values for all pairwise associations of features in a data_list
-
calculate_coclustering()
- Calculate coclustering data.
-
calculate_db_indices()
- Calculate Davies-Bouldin indices
-
calculate_dunn_indices()
- Calculate Dunn indices
-
calculate_silhouettes()
- Calculate silhouette scores
-
cancer_diagnosis_df
- Mock diagnosis data
-
cell_significance_fn()
- Place significance stars on ComplexHeatmap cells.
-
char_to_fac()
- Convert character-type columns of a dataframe to factor-type
-
check_dataless_annotations()
- Helper function to stop annotation building when no data was provided
-
check_hm_dependencies()
- Check for ComplexHeatmap and circlize dependencies
-
check_similarity_matrices()
- Check validity of similarity matrices
-
chi_squared_pval()
- Chi-squared test p-value (generic)
-
cocluster_density()
- Density plot coclustering stability across subsampled data.
-
cocluster_heatmap()
- Heatmap of observation co-clustering across resampled data.
-
coclustering_coverage_check()
- Coclustering coverage check
-
collapse_dl()
- Collapse a data_list into a single dataframe
-
colour_scale()
- Return a colour ramp for a given vector
-
convert_uids()
- Convert unique identifiers of data_list to 'subjectkey'
-
cort_sa
- Mock ABCD cortical surface area data
-
cort_t
- Mock ABCD cortical thickness data
-
depress
- Mock ABCD depression data
-
diagnosis_df
- Mock diagnosis data
-
discretisation()
- Internal function for
estimate_nclust_given_graph
-
discretisation_evec_data()
- Internal function for
estimate_nclust_given_graph
-
dl_has_duplicates()
- Check if data list contains any duplicate features
-
dl_uid_first_col()
- Make the subjectkey UID columns of a data_list first
-
dl_variable_summary()
- Variable-level summary of a data_list
-
domain_merge()
- SNF scheme: Domain merge
-
domains()
- Domains
-
drop_inputs()
- Execute inclusion
-
esm_manhattan_plot()
- Manhattan plot of feature-cluster association p-values
-
estimate_nclust_given_graph()
- Estimate number of clusters for a similarity matrix
-
euclidean_distance()
- Distance metric: Euclidean distance
-
expression_df
- Modification of SNFtool mock dataframe "Data1"
-
extend_solutions()
- Extend an solutions matrix to include outcome evaluations
-
fav_colour
- Mock ABCD "colour" data
-
fisher_exact_pval()
- Fisher exact test p-value
-
gender_df
- Mock gender data
-
generate_annotations_list()
- Generate annotations list
-
generate_clust_algs_list()
- Generate a list of custom clustering algorithms
-
generate_data_list()
- Generate a data_list
-
generate_distance_metrics_list()
- Generate a list of distance metrics
-
generate_settings_matrix()
- Build a settings matrix
-
generate_weights_matrix()
- Generate a matrix to store feature weights
-
get_cluster_df()
- Extract cluster membership information from one solutions matrix row
-
get_cluster_solutions()
- Extract cluster membership information from a solutions_matrix
-
get_clusters()
- Extract cluster membership vector from one solutions matrix row
-
get_complete_uids()
- Pull complete-data UIDs from a list of dataframes
-
get_dist_matrix()
- Calculate distance matrices
-
get_dl_subjects()
- Extract subjects from a data_list
-
get_heatmap_order()
- Return the row or column ordering present in a heatmap
-
get_matrix_order()
- Return the hierarchical clustering order of a matrix
-
get_mean_pval()
- Get mean p-value
-
get_min_pval()
- Get minimum p-value
-
get_pvals()
- Get p-values from an extended solutions matrix
-
get_representative_solutions()
- Extract representative solutions from a matrix of ARIs
-
gower_distance()
- Distance metric: Gower distance
-
hamming_distance()
- Distance metric: Hamming distance
-
income
- Mock ABCD income data
-
individual()
- SNF Scheme: Individual
-
jitter_plot()
- Jitter plot separating a feature by cluster
-
label_prop()
- Label propagation
-
label_splits()
- Convert a vector of partition indices into meta cluster labels
-
linear_adjust()
- Linearly correct data_list by features with unwanted signal
-
linear_model_pval()
- Linear model p-value (generic)
-
list_remove()
- Remove items from a data_list
-
lp_solutions_matrix()
- Label propagate cluster solutions to unclustered subjects
-
mc_manhattan_plot()
- Manhattan plot of feature-meta cluster associaiton p-values
-
merge_data_lists()
- Horizontally merge compatible data lists
-
merge_df_list()
- Merge list of dataframes
-
methylation_df
- Modification of SNFtool mock dataframe "Data2"
-
no_subs()
- Select all columns of a dataframe not starting with the 'subject_' prefix.
-
numcol_to_numeric()
- Convert dataframe columns to numeric type
-
ord_reg_pval()
- Ordinal regression p-value
-
parallel_batch_snf()
- Parallel processing form of batch_snf
-
prefix_dl_sk()
- Add "subject_" prefix to all UID values in subjectkey column
-
pubertal
- Mock ABCD pubertal status data
-
pval_heatmap()
- Heatmap of p-values
-
random_removal()
- Generate random removal sequence
-
reduce_dl_to_common()
- Reduce data_list to common subjects
-
remove_dl_na()
- Remove NAs from a data_list object
-
rename_dl()
- Rename features in a data_list
-
reorder_dl_subs()
- Reorder the subjects in a data_list
-
resample()
- Helper resample function found in ?sample
-
save_heatmap()
- Save a heatmap object to a file
-
scale_diagonals()
- Adjust the diagonals of a matrix
-
settings_matrix_heatmap()
- Heatmap for visualizing a settings matrix
-
sew_euclidean_distance()
- Squared (excluding weights) Euclidean distance
-
shiny_annotator()
- Launch shiny app to identify meta cluster boundaries
-
similarity_matrix_heatmap()
- Plot heatmap of similarity matrix
-
similarity_matrix_path()
- Generate a complete path and filename to store an similarity matrix
-
siw_euclidean_distance()
- Squared (including weights) Euclidean distance
-
sn_euclidean_distance()
- Distance metric: Standard normalization then Euclidean
-
snf_step()
- Convert a data list to a similarity matrix through a variety of SNF schemes
-
spectral_eigen()
- Clustering algorithm: Spectral clustering with eigen-gap heuristic
-
spectral_eigen_classic()
- Clustering algorithm: Spectral clustering with eigen-gap heuristic
-
spectral_eight()
- Clustering algorithm: Spectral clustering for a eight cluster solution
-
spectral_five()
- Clustering algorithm: Spectral clustering for a five cluster solution
-
spectral_four()
- Clustering algorithm: Spectral clustering for a four cluster solution
-
spectral_nine()
- Clustering algorithm: Spectral clustering for a nine cluster solution
-
spectral_rot()
- Clustering algorithm: Spectral clustering with rotation cost heuristic
-
spectral_rot_classic()
- Clustering algorithm: Spectral clustering with rotation cost heuristic
-
spectral_seven()
- Clustering algorithm: Spectral clustering for a seven cluster solution
-
spectral_six()
- Clustering algorithm: Spectral clustering for a six cluster solution
-
spectral_ten()
- Clustering algorithm: Spectral clustering for a ten cluster solution
-
spectral_three()
- Clustering algorithm: Spectral clustering for a three cluster solution
-
spectral_two()
- Clustering algorithm: Spectral clustering for a two cluster solution
-
split_parser()
- Helper function to determine which row and columns to split on
-
subc_v
- Mock ABCD subcortical volumes data
-
subs()
- Select all columns of a dataframe starting with a given string prefix.
-
subsample_data_list()
- Create subsamples of a data_list
-
subsample_pairwise_aris()
- Calculate pairwise adjusted Rand indices across subsamples of data
-
summarize_clust_algs_list()
- Summarize a clust_algs_list object
-
summarize_dl()
- Summarize a data list
-
summarize_dml()
- Summarize metrics contained in a distance_metrics_list
-
summarize_pvals()
- Summarize p-value columns of an extended solutions matrix
-
train_test_assign()
- Training and testing split
-
two_step_merge()
- Two step SNF
-
var_manhattan_plot()
- Manhattan plot of feature-feature associaiton p-values