Skip to contents

All functions

abcd_anxiety
Mock ABCD anxiety data
abcd_colour
Mock ABCD "colour" data
abcd_cort_sa
Mock ABCD cortical surface area data
abcd_cort_t
Mock ABCD cortical thickness data
abcd_depress
Mock ABCD depression data
abcd_h_income
Mock ABCD income data
abcd_income
Mock ABCD income data
abcd_pubertal
Mock ABCD pubertal status data
abcd_subc_v
Mock ABCD subcortical volumes data
add_columns()
Add columns to a dataframe
add_settings_matrix_rows()
Add settings matrix rows
adjusted_rand_index_heatmap()
Heatmap of pairwise adjusted rand indices between solutions
age_df
Mock age data
alluvial_cluster_plot()
Alluvial plot of patients across cluster counts and important features
anxiety
Mock ABCD anxiety data
arrange_dl()
Given a data_list object, sort data elements by subjectkey
assemble_data()
Collapse a dataframe and/or a data_list into a single dataframe
assoc_pval_heatmap()
Heatmap of pairwise associations between features
auto_plot()
Automatically plot features across clusters
bar_plot()
Bar plot separating a feature by cluster
batch_nmi()
Calculate feature NMIs for a data_list and a derived solutions_matrix
batch_row_closure()
Generate closure function to run batch_snf in an apply-friendly format
batch_snf()
Run variations of SNF.
batch_snf_subsamples()
Run SNF clustering pipeline on a list of subsampled data lists.
calc_aris()
Meta-cluster calculations
calc_assoc_pval()
Calculate p-values based on feature vectors and their types
calc_assoc_pval_matrix()
Calculate p-values for all pairwise associations of features in a data_list
calculate_coclustering()
Calculate coclustering data.
calculate_db_indices()
Calculate Davies-Bouldin indices
calculate_dunn_indices()
Calculate Dunn indices
calculate_silhouettes()
Calculate silhouette scores
cancer_diagnosis_df
Mock diagnosis data
cell_significance_fn()
Place significance stars on ComplexHeatmap cells.
char_to_fac()
Convert character-type columns of a dataframe to factor-type
check_dataless_annotations()
Helper function to stop annotation building when no data was provided
check_hm_dependencies()
Check for ComplexHeatmap and circlize dependencies
check_similarity_matrices()
Check validity of similarity matrices
chi_squared_pval()
Chi-squared test p-value (generic)
cocluster_density()
Density plot coclustering stability across subsampled data.
cocluster_heatmap()
Heatmap of observation co-clustering across resampled data.
coclustering_coverage_check()
Coclustering coverage check
collapse_dl()
Collapse a data_list into a single dataframe
colour_scale()
Return a colour ramp for a given vector
convert_uids()
Convert unique identifiers of data_list to 'subjectkey'
cort_sa
Mock ABCD cortical surface area data
cort_t
Mock ABCD cortical thickness data
depress
Mock ABCD depression data
diagnosis_df
Mock diagnosis data
discretisation()
Internal function for estimate_nclust_given_graph
discretisation_evec_data()
Internal function for estimate_nclust_given_graph
dl_has_duplicates()
Check if data list contains any duplicate features
dl_uid_first_col()
Make the subjectkey UID columns of a data_list first
dl_variable_summary()
Variable-level summary of a data_list
domain_merge()
SNF scheme: Domain merge
domains()
Domains
drop_inputs()
Execute inclusion
esm_manhattan_plot()
Manhattan plot of feature-cluster association p-values
estimate_nclust_given_graph()
Estimate number of clusters for a similarity matrix
euclidean_distance()
Distance metric: Euclidean distance
expression_df
Modification of SNFtool mock dataframe "Data1"
extend_solutions()
Extend an solutions matrix to include outcome evaluations
fav_colour
Mock ABCD "colour" data
fisher_exact_pval()
Fisher exact test p-value
gender_df
Mock gender data
generate_annotations_list()
Generate annotations list
generate_clust_algs_list()
Generate a list of custom clustering algorithms
generate_data_list()
Generate a data_list
generate_distance_metrics_list()
Generate a list of distance metrics
generate_settings_matrix()
Build a settings matrix
generate_weights_matrix()
Generate a matrix to store feature weights
get_cluster_df()
Extract cluster membership information from one solutions matrix row
get_cluster_solutions()
Extract cluster membership information from a solutions_matrix
get_clusters()
Extract cluster membership vector from one solutions matrix row
get_complete_uids()
Pull complete-data UIDs from a list of dataframes
get_dist_matrix()
Calculate distance matrices
get_dl_subjects()
Extract subjects from a data_list
get_heatmap_order()
Return the row or column ordering present in a heatmap
get_matrix_order()
Return the hierarchical clustering order of a matrix
get_mean_pval()
Get mean p-value
get_min_pval()
Get minimum p-value
get_pvals()
Get p-values from an extended solutions matrix
get_representative_solutions()
Extract representative solutions from a matrix of ARIs
gower_distance()
Distance metric: Gower distance
hamming_distance()
Distance metric: Hamming distance
income
Mock ABCD income data
individual()
SNF Scheme: Individual
jitter_plot()
Jitter plot separating a feature by cluster
label_prop()
Label propagation
label_splits()
Convert a vector of partition indices into meta cluster labels
linear_adjust()
Linearly correct data_list by features with unwanted signal
linear_model_pval()
Linear model p-value (generic)
list_remove()
Remove items from a data_list
lp_solutions_matrix()
Label propagate cluster solutions to unclustered subjects
mc_manhattan_plot()
Manhattan plot of feature-meta cluster associaiton p-values
merge_data_lists()
Horizontally merge compatible data lists
merge_df_list()
Merge list of dataframes
methylation_df
Modification of SNFtool mock dataframe "Data2"
no_subs()
Select all columns of a dataframe not starting with the 'subject_' prefix.
numcol_to_numeric()
Convert dataframe columns to numeric type
ord_reg_pval()
Ordinal regression p-value
parallel_batch_snf()
Parallel processing form of batch_snf
prefix_dl_sk()
Add "subject_" prefix to all UID values in subjectkey column
pubertal
Mock ABCD pubertal status data
pval_heatmap()
Heatmap of p-values
random_removal()
Generate random removal sequence
reduce_dl_to_common()
Reduce data_list to common subjects
remove_dl_na()
Remove NAs from a data_list object
rename_dl()
Rename features in a data_list
reorder_dl_subs()
Reorder the subjects in a data_list
resample()
Helper resample function found in ?sample
save_heatmap()
Save a heatmap object to a file
scale_diagonals()
Adjust the diagonals of a matrix
settings_matrix_heatmap()
Heatmap for visualizing a settings matrix
sew_euclidean_distance()
Squared (excluding weights) Euclidean distance
shiny_annotator()
Launch shiny app to identify meta cluster boundaries
similarity_matrix_heatmap()
Plot heatmap of similarity matrix
similarity_matrix_path()
Generate a complete path and filename to store an similarity matrix
siw_euclidean_distance()
Squared (including weights) Euclidean distance
sn_euclidean_distance()
Distance metric: Standard normalization then Euclidean
snf_step()
Convert a data list to a similarity matrix through a variety of SNF schemes
spectral_eigen()
Clustering algorithm: Spectral clustering with eigen-gap heuristic
spectral_eigen_classic()
Clustering algorithm: Spectral clustering with eigen-gap heuristic
spectral_eight()
Clustering algorithm: Spectral clustering for a eight cluster solution
spectral_five()
Clustering algorithm: Spectral clustering for a five cluster solution
spectral_four()
Clustering algorithm: Spectral clustering for a four cluster solution
spectral_nine()
Clustering algorithm: Spectral clustering for a nine cluster solution
spectral_rot()
Clustering algorithm: Spectral clustering with rotation cost heuristic
spectral_rot_classic()
Clustering algorithm: Spectral clustering with rotation cost heuristic
spectral_seven()
Clustering algorithm: Spectral clustering for a seven cluster solution
spectral_six()
Clustering algorithm: Spectral clustering for a six cluster solution
spectral_ten()
Clustering algorithm: Spectral clustering for a ten cluster solution
spectral_three()
Clustering algorithm: Spectral clustering for a three cluster solution
spectral_two()
Clustering algorithm: Spectral clustering for a two cluster solution
split_parser()
Helper function to determine which row and columns to split on
subc_v
Mock ABCD subcortical volumes data
subs()
Select all columns of a dataframe starting with a given string prefix.
subsample_data_list()
Create subsamples of a data_list
subsample_pairwise_aris()
Calculate pairwise adjusted Rand indices across subsamples of data
summarize_clust_algs_list()
Summarize a clust_algs_list object
summarize_dl()
Summarize a data list
summarize_dml()
Summarize metrics contained in a distance_metrics_list
summarize_pvals()
Summarize p-value columns of an extended solutions matrix
train_test_assign()
Training and testing split
two_step_merge()
Two step SNF
var_manhattan_plot()
Manhattan plot of feature-feature associaiton p-values